Investigation of Language Understanding Impact for Reinforcement Learning Based Dialogue Systems
نویسندگان
چکیده
Language understanding is a key component in a spoken dialogue system. In this paper, we investigate how the language understanding module influences the dialogue system performance by conducting a series of systematic experiments on a task-oriented neural dialogue system in a reinforcement learning based setting. The empirical study shows that among different types of language understanding errors, slot-level errors can have more impact on the overall performance of a dialogue system compared to intent-level errors. In addition, our experiments demonstrate that the reinforcement learning based dialogue system is able to learn when and what to confirm in order to achieve better performance and greater robustness.
منابع مشابه
Combining POMDPs trained with User Simulations and Rule-based Dialogue Management in a Spoken Dialogue System
Over several years, we have developed an approach to spoken dialogue systems that includes rule-based and trainable dialogue managers, spoken language understanding and generation modules, and a comprehensive dialogue system architecture. We present a Reinforcement Learning-based dialogue system that goes beyond standard rule-based models and computes on-line decisions of the best dialogue move...
متن کاملModel-free POMDP optimisation of tutoring systems with echo-state networks
Intelligent Tutoring Systems (ITSs) are now recognised as an interesting alternative for providing learning opportunities in various domains. The Reinforcement Learning (RL) approach has been shown reliable for finding efficient teaching strategies. However, similarly to other human-machine interaction systems such as spoken dialogue systems, ITSs suffer from a partial knowledge of the interloc...
متن کاملUser Simulation in Dialogue Systems Using Inverse Reinforcement Learning
Spoken Dialogue Systems (SDS) are man-machine interfaces which use natural language as the medium of interaction. Dialogue corpora collection for the purpose of training and evaluating dialogue systems is an expensive process. User simulators aim at simulating human users in order to generate synthetic data. Existing methods for user simulation mainly focus on generating data with the same stat...
متن کاملSubmission Category: Applications, Preference: ORAL Reinforcement Learning for Spoken Dialogue Systems
Recently, a number of authors have proposed treating dialogue systems as Markov decision processes (MDPs). However, the practical application of MDP algorithms to dialogue systems faces a number of severe technical challenges. We have built a general software tool (RLDS, for Reinforcement Learning for Dialogue Systems) based on the MDP framework, and have applied it to dialogue corpora gathered...
متن کاملReinforcement Learning for Spoken Dialogue Systems
Recently, a number of authors have proposed treating dialogue systems as Markov decision processes (MDPs). However, the practical application of MDP algorithms to dialogue systems faces a number of severe technical challenges. We have built a general software tool (RLDS, for Reinforcement Learning for Dialogue Systems) based on the MDP framework, and have applied it to dialogue corpora gathered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.07055 شماره
صفحات -
تاریخ انتشار 2017